HPRT MEETING MINUTES

Staff Meeting

Tuesday, 24 October 2017 3:00pm to

Minutes recorded by: Myla Azofeifa

Meeting called by: Alex Rustaey

Attendees: Yi Tong Zhang, Jordan Loos, William McGinn, Dr. David Trevas, Amy Swartz

Table 1 - Record of Meeting

2:35pm	 HPRT team members only Honeywell cancelled Determined next in-person team meeting (see below) Discussed viable solutions for redesign (what did we learn from individual analyses) 	EGR 323
3:00pm	 Begin Meeting Honeywell cancelled until next week Meeting called to order by Alex Rustaey We need to focus on concept generation from here on out Have been focusing on research and understanding up to this point, which is important Dr. Trevas praised the website - probably the best of the 17 so far Topics Individual Analyses Concept generations 	EGR 323
3:00pm	 Individual Analyses Myla - Pinch valves Not a viable option for pressure regulator because of material properties needed (specified max. Temperature of 1400°F, but polymer needed for the pinch valve sleeve went up to a max of. 500°F) Bill - mathematical paper Found a force balance equation for pressure regulator Found an equation to calculated hysteresis Currently just a formula (not too complicated) that could be really easy to put into MATLAB) Left it open ended for now - would rather get a 	EGR 323

real number from a real test rather than creating lots of hypotheticals	
 Guided where we go from here by helping us actablishing a testing method 	
establishing a testing method	
Alex - Turbo expander	
 Idealized the turbo expander; analyzed as a turbing at steady state (even though our events) 	
turbine at steady state (even though our system	
will not be)	
 Neglected potential & kinetic energy Turbing officianay Accuracy 	
• Turbine efficiency assumed 90%	
 Linear relationship between inlet temperature and work output 	
 Exponential for inlet pressure and work pressure 	
 To prove viability of Turbo Expanders 	
 Precision parts within the volume that we 	
are tasked with	
 Would increase the cost 	
 Durability & integrity comes into play 	
A lot more that we need to look into	
before we go down this route	
$\circ \rightarrow$ look into turbo chargers used in cars	
Pretty small	
 Go high speed 	
Fairly good precision, but mass produced	
part that they are not necessarily	
expensive	
• What are realistic inlet temperatures? What	
are we using as our frame of reference?	
 Jordan - Pulse Width Modulation 	
 Looked at the applications within the electronics 	
scope	
 Looked into PWI with respect to pressure 	
 Manufacturing applications are common (IE 	
spray down, etc.)	
 Variable area nozzles 	
 How we can control pressure drop based on abarating the area of the inlatend sublate of 	
changing the area of the inlet and outlets of	
nozzles	
 Needs to be electronic t be controlled Brainstormed ways in which we can control the 	
 Brainstormed ways in which we can control the pozzle electronically 	
 nozzle electronically Honeywell has specified that we want a 	
 Honeywell has specified that we want a mechanical control 	
 A variable area nozzle could work 	
 Electronics prefer to be wide open or closed - 	
nothing in between (mechanical parts can be	
partially open and closed)	
 From here on out - focus on variable area 	
nozzles	
Yi Tong - flexible metal bellows	

3:35pm	 Calculated spring rate Using metal bellows is a viable design option based on his research Where do we go from here? Collectively put in more effort in concept generation Where we are stuck is understanding where hysteresis actually comes from, and how do we minimize that → how do we design to minimize this Concept generation is our biggest goal right now Problem with hysteresis is that is reduces accuracy 				
	 Concept generation is our biggest goal right how Problem with hysteresis is that is reduces accuracy Contaminates cause hysteresis Discussed the etymology of the work "GUNK" B:45pm Meeting adjourned. 				

Table 2 - Action Items (Tasks Assigned)

Tasks	Person Assigned	Due Date	Date Complete
Generate concept designs.		10/29/2017	
 Questions to answer: What are realistic inlet temperatures? How much hysteresis is created by the contaminates? 			
Research vehicle turbochargers. Focus on feedback looping. Regenerative braking (the torque on the wheels that is used to slow it down used predominantly in a Prius)	Alex Rustaey		
Continue looking into variable area nozzles.	Jordan Loos		
Continue researching flexible metal bellows → determine the dimensions	Yi Tong Zhang		

needed for metal bellows to be a viable design option.			
How would you drive the closure element to react to the change in pressures.	Mechanical - Bill McGinn Electronic - Myla Azofeifa		
Reschedule next semester Honeywell meetings, due to class interferences.			
Analyze the etymology of the word "gunk."	Bill McGinn		
Complete shop safety training. Must be done on a weekday at 9:30am. Contact Kellan Rothfus for more information.	Jordan Loos Bill McGinn Alex Rustaey Yi Tong Zhang	Spring 2018	Alex - 10/24/2017
Complete Advanced Shop Training (following the completion of shop safety training). Available every other weekend beginning 9/9 & 9/10. Contact Kellan Rothfus for more information.	Jordan Loos Bill McGinn Alex Rustaey Yi Tong Zhang	Spring 2018	

Next formal meeting: Sunday, 29 October 2017, Engineering Bldg. (#69), Room 108 at 6:00 PM (client meeting)